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Abstract
Use of the Dirac equation for a single particle in an electromagnetic field has
led to many successful predictions. For more than one particle, the approach
is usually through quantum field theory. In this contribution, we follow the
original Dirac approach, but for a two-body problem, starting with a discussion
of positronium. The problem can be reduced to that of solving a set of radial
equations, but unfortunately obtaining an exact solution of them by means of
a recurrence procedure, as was done for the hydrogen atom by Dirac, does not
seem feasible. However, an evaluation of the relativistic corrections to the order
(1/c2) is made for parapositronium and orthopositronium. These results are
discussed and their relevance to other problems of this type—such as that of the
quark–antiquark system—are mentioned, as solving these will be the eventual
objective of future work.

PACS numbers: 03.65.Ge, 03.65.Pm

1. Introduction

The Dirac equation for a single charged particle in an electromagnetic field has been used
extremely successfully in explaining many aspects of relativistic phenomena in quantum
mechanics. For more than one charged particle, the interactions are best treated in relativistic
quantum field theory. However, a description along the lines followed by Dirac himself in the
one-particle case was obtained in a Poincaré invariant fashion for the two-body problem by a
method similar to the one used by Moshinsky and Smirnov (p 326 of [1]). The procedure even
allowed the removal of the centre-of-mass motion. The simplest case is that of two particles
with spins s = 1

2 interacting through some type of potential. An example would be the case
of positronium or that of a quark and an antiquark interacting through a potential which, for
simplicity, we shall assume is central.
1 Member of El Colegio Nacional and the Sistema Nacional de Investigadores.
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The Hamiltonian that we have to deal with has the form

H ′ = (cα1 · p′
1 + m1c

2β1) + (cα2 · p′
2 + m2c

2β2) + V (r ′) (1)

where: r ′ = |r′
1 − r′

2|; m1, m2 and p′
1, p′

2 are respectively the masses and momenta of the
two particles; and V (r ′) the central potential. We denote here the Hamiltonian, momenta and
coordinates in cgs units with a prime, as we want to reserve unprimed letters for use with a
more convenient set of units.

We shall start our discussion with the case of positronium, using an approach that differs
from those in most of the hundreds of papers written on the subject. Rather than give references
to all of these, we just mention a very recent book [2] in which they can be found.

2. The Hamiltonian for positronium

In the case of positronium, it is convenient to use atomic units with a slight modification, i.e.

h̄ = µ = e = 1 (2)

where e is the charge of the electron or positron and µ is the reduced mass which, as the masses
m of the electron and positron are equal, is

µ = (m/2). (3)

We also go, following [1], to the centre-of-mass frame by introducing the total and relative
momenta

p′
1 = P + p, p′

2 = P − p (4)

or, equivalently,

P = p′
1 + p′

2, p = 1
2 (p′

1 − p′
2). (5)

As we are not interested in the motion of the system as a whole, we can take P = 0, and
thus in our units the equation of motion corresponding to equation (1) becomes{

[c(α1 − α2) · p + 2(β1 + β2)c
2] − 1

r

}
� = E�. (6)

Note that the velocity of light c remains in the equation, though it is a dimensionless
parameter. From the fine-structure constant

e2

h̄c
� 1

137
(7)

we see that the velocity of light in atomic units is given approximately by the number 137
given above.

What now are the forms of α1, α2, β1, β2? As this is a two-body problem, they are given
by the direct products

α1 =
(

0 σ1

σ1 0

)
⊗
(

I 0
0 I

)

α2 =
(

I 0
0 I

)
⊗
(

0 σ2

σ2 0

)

β1 =
(

I 0
0 −I

)
⊗
(

I 0
0 I

)
, β2 =

(
I 0
0 I

)
⊗
(

I 0
0 −I

)
.

(8)
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Introducing these direct products explicitly into equation (6), we can write it in the form

O




ψ1

ψ2

ψ3

ψ4


 ≡


2c




0 s1 · p −s2 · p 0
s1 · p 0 0 −s2 · p

−s2 · p 0 0 s1 · p

0 −s2 · p s1 · p 0


 + 4c2




I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −I




−
(

E +
1

r

)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1








ψ1

ψ2

ψ3

ψ4


 = 0 (9)

where we have replaced Pauli matrices σt , t = 1 or 2, by spin matrices:

s1 = 1
2σ1, s2 = 1

2σ2. (10)

Note that actually the matrices in (9) are 16 × 16, because st → st ⊗ I , I → I ⊗ I and
each of the ψλ, λ = 1, 2, 3, 4, actually have four components, as we shall show later.

The question that comes immediately to mind is that of whether equation (9) can be
reduced to one depending on the single radial variable r and whether, if it can be put into that
form, an exact solution of this equation could be obtained.

3. The radial form of the two-body problem

The relativistic two-body problem with spin is given by equation (9) and to transform it to a
set of equations involving only the radial variable r we need the angular and spinorial part of
the ket, which is obviously

|(l, s)jm〉 =
∑
µ,σ

〈lµ, sσ |jm〉Ylµ(θ, ϕ)χsσ (11)

where, with the addition of two spins s = 1
2 , the total spin s can take only the values s = 0 or

s = 1 with projections which are respectively σ = 0 or σ = 1, 0, −1. The total angular
momentum j and its projection are integrals of motion, as the full problem is invariant
under rotations, and the orbital angular momentum is restricted to l = j if s = 0 and to
l = j + 1, j, j − 1 if s = 1. Note that states with l = j ± 1 and j have opposite parity. χsσ

represents the spin wavefunction χsσ = | 1
2

1
2 sσ 〉.

The wavefunction ψλ, λ = 1, 2, 3, 4 of equation (9) can now be written as

ψλ =
∑
l,s

f
λj

ls (r)|(l, s)jm〉. (12)

To get the radial equations involving the f
λj

ls (r) we need only to have the matrix
representation of the operator O of equation (9) with respect to the angular and spinorial
ket of equation (11). As O can be written in the matrix form O = ‖Oλ′λ‖, we have from
equation (9) that

Oλ′λ = 2c{(s1 · p)[δλ′=1,λ=2 + δλ′=2,λ=1 + δλ′=3,λ=4 + δλ′=4,λ=3]

− (s2 · p)[δλ′=1,λ=3 + δλ′=3,λ=1 + δλ′=4,λ=2 + δλ′=2,λ=4]}
+ 4c2(δλ′=1,λ=1 − δλ′=4,λ=4) −

(
E +

1

r

)
δλ′λ (13)

and, ignoring the trivial entries in the matrix 〈(l′, s ′)jm|Oλ′λ|(l, s)jm〉, the only one that merits
attention is (st · p), t = 1, 2 [3]:

〈(l′s ′)jm|st · p|(l, s)jm〉 = (−1)l
′+s−j

× [(2l′ + 1)(2s ′ + 1)]1/2W(ll′ss ′; 1j)〈l′‖p‖l〉〈 1
2

1
2 s ′‖st‖ 1

2
1
2 s〉. (14)
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In equation (14), W is a Racah coefficient and the reduced matrix elements are given by [4]

〈l′‖p‖l〉 = iδl′
l−1

√
l

2l − 1

(
∂

∂r
+

l + 1

r

)
− iδl′

l+1

√
l + 1

2l + 3

(
∂

∂r
− l

r

)
(15)

and by [3]

〈 1
2

1
2 s ′‖st‖ 1

2
1
2 s〉 = (−1)1−sW

(
1
2

1
2 1s ′; s 1

2

)√
3
4 (16)

where the latter clearly shows that when s ′ = 1, s = 0, it will not vanish.
Thus the orbital spin states |(j, 0)jm〉 and |(j, 1)jm〉 that have the same parity and,

because of (16), have no spin selection rule will be connected and, because of parity, will also
be connected with the states |(j ± 1, 1)jm〉 by the matrix element of equation (14), as p is a
polar vector.

We can then write out explicitly the set of first-order radial equations for f
λj

ls (r), but we
shall not do this because, despite several people having attempted it, it did not prove possible
to find a recursion relation that allowed the exact solution of the problem, unlike in the Dirac
discussion [5] of the hydrogen atom. Thus what we actually do is to go to the second-order
equation obtained from the operator O and carry out an expansion in powers of 1/c2.

4. The second-order equation for the two-body problem

The matrix wave equation (9) can be written in terms of the submatrices:

2c

(
s1 · p −s2 · p

−s2 · p s1 · p

)(
ψ2

ψ3

)
=
(

E + 1/r − 4c2 0
0 E + 1/r + 4c2

)(
ψ1

ψ4

)
(17)

2c

(
s1 · p −s2 · p

−s2 · p s1 · p

)(
ψ1

ψ4

)
=
(

E +
1

r

)(
ψ2

ψ3

)
. (18)

Dividing equation (18) by (E + 1/r) and substituting in equation (17), we obtain

4c2

(
s1 · p −s2 · p

−s2 · p s1 · p

)
1

(E + 1/r)

(
s1 · p −s2 · p

−s2 · p s1 · p

)(
ψ1

ψ4

)

=
(

E + 1/r − 4c2 0
0 E + 1/r + 4c2

)(
ψ1

ψ4

)
. (19)

We note now that the commutator[
(st · p),

(
E +

1

r

)−1]
= 1

i

(
E +

1

r

)−2

(st · r)r−3 (20)

and so we can write equation (19) as

4c2

i

(
E +

1

r

)−2

r−3

(
s1 · r −s2 · r

−s2 · r s1 · r

)(
s1 · p −s2 · p

−s2 · p s1 · p

)(
ψ1

ψ4

)

+
4c2

(E + 1/r)

(
s1 · p −s2 · p

−s2 · p s1 · p

)(
s1 · p −s2 · p

−s2 · p s1 · p

)(
ψ1

ψ4

)

=
(

E + 1/r − 4c2 0
0 E + 1/r + 4c2

)(
ψ1

ψ4

)
. (21)

This last equation still involves the spins of the two particles s1, s2, but it can be transformed
so as to involve only the total spin.

Using the relation between the Pauli spin matrices

σi σj = δij + iεijkσk (22)

we obtain straightforwardly that equation (21) can be written as
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1

i
4c2

(
E +

1

r

)−2

r−3

]

×
[ 1

2 (r · p) + i
2 (S · L) 1

2 (r · p) + i
2 (S · L) − (S · r)(S · p)

1
2 (r · p) + i

2 (S · L) − (S · r)(S · p) 1
2 (r · p) + i

2 (S · L)

]

×
[

ψ1

ψ4

]
+

4c2

(E + 1/r)

[ 1
2p2 1

2p2 − (S · p)2

1
2p2 − (S · p)2 1

2p2

] [
ψ1

ψ4

]

=
[

E + r−1 − 4c2 0
0 E + r−1 + 4c2

] [
ψ1

ψ4

]
(23)

where S is the total spin and L the orbital angular momentum when they denote operators,
while we use lower case letters s, l for the eigenvalues, i.e.

S = s1 + s2, L = r × p. (24)

We note now that in equation (23) only the components of the total spin vector S appear
and they will commute with the square S2 of this operator. Thus S2 is an integral of motion
whose eigenvalue s(s + 1) is either 0 or 2. We can then separate equation (23) into two
parts, one in which s = 0, relating to parapositronium, and the other with s = 1, relating to
orthopositronium.

Furthermore, for orthopositronium we note that parity is a good quantum number and so
we can distinguish the cases in which l = j from those in which l = j ± 1.

We shall discuss separately the cases of parapositronium and orthopositronium.

5. The relativistic energy correction for parapositronium to order (1/c2)

Before embarking on our discussion, we first note that in cgs units the rest energy of positronium
is 2mc2 = 4µc2 where µ is the reduced mass.

In the units of equation (2), the rest energy is 4c2. Thus we can denote our total energy E

as

E = 4c2 + ε (25)

where ε is actually the binding energy of positronium that we want to determine.
For parapositronium, as s = 0, the terms containing the vector S in equation (23) vanish

and thus using equation (25) our equation becomes

−i 2c2(4c2 + ε + r−1)−2r−3(r · p)

[
1 1
1 1

](
ψ1

ψ4

)

+ 2c2(4c2 + ε + r−1)−1p2

[
1 1
1 1

](
ψ1

ψ4

)

=
[

ε + r−1 0
0 ε + r−1 + 8c2

](
ψ1

ψ4

)
. (26)

The left-hand side of equation (26) can be diagonalized with the help of the matrix

U = 1√
2

(
1 −1
1 1

)
(27)

as

U−1

(
1 1
1 1

)
U =

(
2 0
0 0

)
. (28)
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Writing then (
ψ1

ψ4

)
= U

(
ψ+

ψ−

)
(29)

and multiplying equation (26) by U−1 on the left-hand side, we get

−4ic2(4c2 + ε + r−1)−2r−3(r · p)ψ+ + 4c2(4c2 + ε + r−1)−1p2ψ+

=
[

4c2 + ε +
1

r

]
ψ+ − 4c2ψ−, (30)

0 = [4c2 + ε + r−1]ψ− − 4c2ψ+. (31)

Using equation (31) to express ψ− in terms of ψ+ and substituting in equation (30), we
obtain

−4ic2(4c2 + ε + r−1)−2r−3(r · p)ψ+ + 4c2(4c2 + ε + r−1)−1p2ψ+

= 4c2[(ε + r−1)(4c2)−1 + 1]ψ+ − 4c2[1 + (ε + r−1)(4c2)−1]−1ψ+. (32)

We now wish to express equation (32) in terms of inverse powers of c2 using the well
known expansion

(1 + x)−n =
∞∑

m=0

(−1)m
(n + m − 1)!

(n − 1)!m!
xm, |x| < 1. (33)

Now defining w:

w ≡ (4c2 + ε + r−1) = 4c2

[
1 +

(ε + r−1)

4c2

]
, (34)

we have from equation (33) the expansions

4c2w−1 = 1 +
∞∑

m=1

(−1)m
(

ε + r−1

4c2

)m

(35)

4c2w−2 = −
∞∑

m=1

(−1)m
m(ε + r−1)m−1

(4c2)m
(36)

and so substituting in equation (32) we get

i
∞∑

m=1

(−1)m
m(ε + r−1)m−1

(4c2)m
r−3(r · p)ψ+ +

{
1 +

∞∑
m=1

(−1)m
(ε + r−1)m

(4c2)m

}
p2ψ+

= 2(ε + r−1)ψ+ −
∞∑

m=2

(−1)m
(ε + r−1)m

(4c2)m−1
ψ+. (37)

If we disregard in equation (37) all the terms containing (1/c2) (or equivalently consider
c → ∞), and divide what is left by the factor 2, we get the equation(

1

2
p2 − 1

r

)
ψ+ = εψ+ (38)

which is precisely the non-relativistic equation for positronium in the units of equation (2) and
the binding energy ε becomes of course [6]

εν = − 1

2ν2
, ν = n + l + 1 (39)

with ν, n being respectively the total and radial quantum number and l the orbital angular
momentum.
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If we include in equation (32) all the terms up to those of order (1/c2), and again divide
by 2, we get the expression

Hpψ+ =
{

[(p2/2) − r−1] − 1

8c2

(
1

r2

∂

∂r

)
− 1

32c2
p4

}
ψ+ = εψ+ (40)

where in the terms of order (1/c2) we replace, as usual [6], (ε + r−1) by (p2/2) and use the
fact that

r−3(r · p) = − i

r2

∂

∂r
. (41)

An equivalent result was obtained using another procedure by Królikowski [7].
The corresponding formula for the hydrogen atom [6] in atomic units h̄ = m = c = 1 is

Hh� ≡
{[

1

2
p2 − 1

r

]
+

1

c2

(
−p4

8
− 1

4r2

∂

∂r
+

1

2r3
(L · S)

)}
ψ = εψ. (42)

We note that in parapositronium there are no spin–orbit coupling terms, as we should
expect from the fact that the total spin s = 0. Furthermore, the coefficients of the other terms
in equations (40) and (42) are different.

6. The relativistic correction of orthopositronium to order (1/c2)

We now consider the full equation (23) but with the spin having the value 1, which implies
that the total spin vector S appears and its components Si , i = 1, 2, 3, commute with S2.
This indicates that the latter is an integral of motion, whose eigenvalue is s(s + 1) = 2. We
decompose the right-hand side of equation (23) into the form

(E + r−1)

(
1 0
0 1

)
− 4c2

(
1 0
0 −1

)
. (43)

We now write(
ψ1

ψ4

)
= U

(
ψ+

ψ−

)
, (44)

where U is given in equation (27), and we multiply equation (23) by U−1 on the left.
Before writing down the resulting expressions, we note that

U−1

(
1 0
0 1

)
U =

(
1 0
0 1

)
; U−1

(
1 0
0 −1

)
U = −

(
0 1
1 0

)
;

U−1

(
a b

b a

)
U =

(
a + b 0

0 a − b

)
.

(45)

Furthermore, for compactness in the equation, we write

a ≡ 1

2
(r · p) +

i

2
(S · L), b ≡ 1

2
(r · p) +

i

2
(S · L) − (S · r)(S · p) (46)

u ≡ 1
2p2, v ≡ 1

2p2 − (S · p)2 (47)

w ≡ (E + r−1) (48)

where again we use the expression (25) for E, so w is the same as in equation (34).
Substituting the results (43)–(48) in equation (23) as modified by (45), we get for ψ+, ψ−

the equations

{−4ic2w−2r−3(a + b) + 4c2w−1(u + v) − w}ψ+ = 4c2ψ− (49)

{−4ic2w−2r−3(a − b) + 4c2w−1(u − v) − w}ψ− = 4c2ψ+. (50)
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Using equation (49) to express ψ− in terms of ψ+ and substituting in equation (50), we
obtain

{[−4ic2w−2r−3(a − b) + 4c2w−1(u − v) − w]

× [−4ic2w−2r−3(a + b) + 4c2w−1(u + v) − w]}ψ+ = 16c4ψ+. (51)

Using now the expansions of equations (35) and (36) for (4c2w−1) and (4c2w−2), we see
that equation (51) becomes[{

i
∞∑

m=1

(−1)m
m(ε + r−1)m−1

(4c2)m
r−3(a − b)

+

[
1 +

∞∑
m=1

(−1)m
(

ε + r−1

4c2

)m]
(u − v) − (4c2 + ε + r−1)

}

×
{

i
∞∑

m=1

(−1)m
m(ε + r−1)m−1

(4c2)m
r−3(a + b)

+

[
1 +

∞∑
m=1

(−1)m
(

ε + r−1

4c2

)m]
(u + v) − (4c2 + ε + r−1)

}]
ψ+ = 16c4ψ+.

(52)

We now keep only terms up to order (1/c2) in equation (52) and replace a, b, u, v

in (46), (47) by their values, and note that there is a term 16c4 on the left-hand side that
cancels with the 16c4 on the right-hand side. Furthermore, we divide the equation that remains
by (−8c2) and after simplifications we obtain for orthopositronium, up to terms of the order
(1/c2), the equation

Hoψ+ ≡
{(

p2

2
− 1

r

)
− 1

8c2

[
1

r2

∂

∂r
− r−3(S · L)

+ (S · p)2[p2 − (S · p)2]

]
− p4

32c2

}
ψ+ = εψ+. (53)

Again, as in the case of parapositronium, we replace (ε + r−1) by (p2/2) in the terms of
order (1/c2), and −ir−3(r · p) by −r−2 ∂/∂r .

We have then, to order (1/c2), the Hamiltonian for parapositronium in equation (40)
and orthopositronium in equation (53), and they differ from each other as well as from the
corresponding formula (42) for the hydrogen atom. Clearly the value of the spin s = 1

2 for the
hydrogen atom and s = 0 or s = 1 for parapositronium and orthopositronium influence the
parts of order (1/c2) in their respective Hamiltonians.

7. Evaluation of the relativistic energy corrections in positronium up to order (1/c2)

We note first that, compared with the non-relativistic energy −(1/2ν2) of equation (39), the
relativistic correction to order (1/c2) is very small as, from equation (7), we have

1

c2
� 1

(137)2
= 5.328 × 10−5 (54)

and thus we can limit our consideration to first-order perturbation theory using the eigenstates
of equation (41.32) on p 197 of reference [1] for the Coulomb problem with a spin part, of the
form

|n(l, s)jm〉 ≡ Rnl(r)|(l, s)jm〉 (55)
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where the ket representing the orbital spin part is given in equation (11), the radial part Rnl(r)

has the form of equation (41.32) on p 197 of reference [1]:

Rnl(r) = 2

ν2
Rnl(ρ); ν = n + l + 1 (56)

and the right-hand function is the eigenfunction of the Sturm–Coulomb problem of the form
of equation (41.17) on p 195 of reference [1], i.e.

Rnl(ρ) =
√

n!

(n + 2l + 1)!
ρlL2l+1

n (ρ)e−ρ/2, ρ ≡ (2r/ν). (57)

The Hamiltonians of the parapositronium and orthopositronium are given by the terms
inside the curly brackets of equations (40) and (53), and will be designated respectively as

Hp and Ho. (58)

The eigenvalues of these Hamiltonians (which are written out only up to terms (1/c2))
will be given by the matrix elements of their expectation values:

〈n(l, s)jm|Hq |n(l, s)jm〉 where q = p, o. (59)

The evaluation of these matrix elements is straightforward using the results of p 346 of
reference [1] and the table 25 on p 117 of reference [6], and we just give their values, denoting
the energies by εpnl or εonl depending on whether they correspond to the parapositronium or
orthopositronium. For the latter, the kets of equation (55) reduce to

|n(j, 1)jm〉 and |n(j ± 1, 1)jm〉 (60)

which have opposite parities and thus give independent results. For conciseness, we shall only
discuss here the first case, i.e. l = j .

From equation (59) we obtain for parapositronium with l = j

εpnj = − 1

2ν2
+

δj0

4c2ν3
− 1

32c2

1

ν4(j + 1/2)
[4ν − 3(j + 1/2)] (61)

where ν = (n + j + 1) and for the ground state n = j = 0 or ν = 1 we get

εp00 = −1

2
+

3

32c2
(62)

where (1/c2) is given by equation (54).
For orthopositronium with l = j we obtain, again using equation (59),

εonj = − 1

2ν2
+

δj0

4c2ν3
− 1

8c2

[
1

ν3

1

(j + 1
2 )(j + 1)j

]
− 1

32c2

1

ν4(j + 1
2 )

[
4ν − 3

(
j +

1

2

)]
.

(63)

Note that our analysis is taken only up to order (1/c2) in the units of equation (2), which
in cgs units becomes (e2/h̄c)2 ≡ α2, the fine-structure constant. Thus our results give us
terms only up to α2. For higher-order terms we would have to continue the expansions in
equation (37) or (52) to higher order in (1/c2), making the replacements for ε (the energy)
from the previous order. We shall not do this, as the objective of our paper is to illustrate the
two-body problem with spin in relativistic quantum mechanics, for which positronium is just
an example—besides which, there has recently appeared an analysis of positronium, by Kniehl
and Penin [8], in quantum electrodynamics (QED) that continues to a much higher order in
(e2/h̄c).
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8. Conclusions

We have discussed the example of positronium in relativistic quantum mechanics and showed
that the exact radial problem with spins 0 or 1 is similar to that of a particle in a Dirac equation
with an r−1-potential where the spin is 1

2 . In contrast to what was achieved in the one-body
problem [5], these radial equations for positronium do not seem amenable to a solution by
means of a recurrence relation. However, it was possible to obtain the relativistic corrections
to order (1/c2) and they are quite different for the parapositronium and orthopositronium cases
as well as for the hydrogen atom.

As we mentioned in the introduction, our interest in the problem is also related to the
possible application to quark–antiquark systems, i.e., mesons. In equation (1) their masses
were given respectively as m1, m2 and a simple form for the interaction V (r ′) is

V (r ′) = d ′r ′ − b′2

r ′ (64)

where d ′, b′ are constants obtained from experimental data.
Since for the potential V (r ′) of equation (64), even the non-relativistic limit has to be

solved numerically, we preferred first to consider a problem in which the non-relativistic limit
is well known, that of positronium. We plan to continue with the quark–antiquark problem, but
using a variational approach with the help of harmonic oscillator functions. For this procedure
it is convenient to make in equation (1) the change of variables

r′ =
√

h̄/µωr, p′ =
√

h̄µωp, H ′ = µc2H (65)

with µ being the reduced mass m1m2(m1 + m2)
−1 and ω the frequency of the oscillator in our

trial wavefunctions. In the centre-of-mass frame, our equation then has the form

Hψ =
{
a(α1 − α2) · p +

(
m1

µ

)
β1 +

(
m2

µ

)
β2 +

(
dr − b2

r

)}
ψ = Eψ (66)

where

d = 1

a

d ′(h̄/µc)

µc2
, b2 = b′2(µc/h̄)

µc2
a, (67)

a = (h̄ω/µc2)1/2; E = (E′/µc2). (68)

Our objective is to make a variational determination of the eigenvalues and eigenstates of
the non-relativistic problem stated as

Hψ ≡
[

1

2µ
p2 +

(
dr − b2

r

)]
ψ = Eψ. (69)

Once this is achieved, the relativistic corrections up to order (1/c2) can be carried out
along the lines of the present paper.
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